Processing math: 100%
so(13), type B16
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.

Page generated by the calculator project.

Lie algebra type: B^{1}_6.
Weyl group size: 46080.
A drawing of the root system in its corresponding Coxeter plane. Computations were carried out as explained by John Stembridge.
The darker red dots can be dragged with the mouse to rotate the picture.
The grey lines are the edges of the Weyl chamber.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 200.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(0.15, 0.56, 1.12, 1.67, 2.08, 2.23)
(0.56, 0.97, 1.12, 0.97, 0.56, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (174.12, 214.94)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (185.06, 225.88)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 229.89)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (214.94, 225.88)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (225.88, 214.94)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (214.94, 144.23)


The root system has 72 elements.
Simple basis coordinatesEpsilon coordinatesReflection w.r.t. root
(-1, -2, -2, -2, -2, -2)-e_{1}-e_{2}s2s1s3s2s4s3s5s4s6s5s4s3s2s1s6s5s4s3s2
(-1, -1, -2, -2, -2, -2)-e_{1}-e_{3}s1s3s2s4s3s5s4s6s5s4s3s2s1s6s5s4s3
(0, -1, -2, -2, -2, -2)-e_{2}-e_{3}s3s2s4s3s5s4s6s5s4s3s2s6s5s4s3
(-1, -1, -1, -2, -2, -2)-e_{1}-e_{4}s1s2s4s3s5s4s6s5s4s3s2s1s6s5s4
(0, -1, -1, -2, -2, -2)-e_{2}-e_{4}s2s4s3s5s4s6s5s4s3s2s6s5s4
(-1, -1, -1, -1, -2, -2)-e_{1}-e_{5}s1s2s3s5s4s6s5s4s3s2s1s6s5
(0, 0, -1, -2, -2, -2)-e_{3}-e_{4}s4s3s5s4s6s5s4s3s6s5s4
(0, -1, -1, -1, -2, -2)-e_{2}-e_{5}s2s3s5s4s6s5s4s3s2s6s5
(-1, -1, -1, -1, -1, -2)-e_{1}-e_{6}s1s2s3s4s6s5s4s3s2s1s6
(0, 0, -1, -1, -2, -2)-e_{3}-e_{5}s3s5s4s6s5s4s3s6s5
(0, -1, -1, -1, -1, -2)-e_{2}-e_{6}s2s3s4s6s5s4s3s2s6
(-1, -1, -1, -1, -1, -1)-e_{1}s1s2s3s4s5s6s5s4s3s2s1
(0, 0, 0, -1, -2, -2)-e_{4}-e_{5}s5s4s6s5s4s6s5
(0, 0, -1, -1, -1, -2)-e_{3}-e_{6}s3s4s6s5s4s3s6
(0, -1, -1, -1, -1, -1)-e_{2}s2s3s4s5s6s5s4s3s2
(-1, -1, -1, -1, -1, 0)-e_{1}+e_{6}s1s2s3s4s5s4s3s2s1
(0, 0, 0, -1, -1, -2)-e_{4}-e_{6}s4s6s5s4s6
(0, 0, -1, -1, -1, -1)-e_{3}s3s4s5s6s5s4s3
(0, -1, -1, -1, -1, 0)-e_{2}+e_{6}s2s3s4s5s4s3s2
(-1, -1, -1, -1, 0, 0)-e_{1}+e_{5}s1s2s3s4s3s2s1
(0, 0, 0, 0, -1, -2)-e_{5}-e_{6}s6s5s6
(0, 0, 0, -1, -1, -1)-e_{4}s4s5s6s5s4
(0, 0, -1, -1, -1, 0)-e_{3}+e_{6}s3s4s5s4s3
(0, -1, -1, -1, 0, 0)-e_{2}+e_{5}s2s3s4s3s2
(-1, -1, -1, 0, 0, 0)-e_{1}+e_{4}s1s2s3s2s1
(0, 0, 0, 0, -1, -1)-e_{5}s5s6s5
(0, 0, 0, -1, -1, 0)-e_{4}+e_{6}s4s5s4
(0, 0, -1, -1, 0, 0)-e_{3}+e_{5}s3s4s3
(0, -1, -1, 0, 0, 0)-e_{2}+e_{4}s2s3s2
(-1, -1, 0, 0, 0, 0)-e_{1}+e_{3}s1s2s1
(0, 0, 0, 0, 0, -1)-e_{6}s6
(0, 0, 0, 0, -1, 0)-e_{5}+e_{6}s5
(0, 0, 0, -1, 0, 0)-e_{4}+e_{5}s4
(0, 0, -1, 0, 0, 0)-e_{3}+e_{4}s3
(0, -1, 0, 0, 0, 0)-e_{2}+e_{3}s2
(-1, 0, 0, 0, 0, 0)-e_{1}+e_{2}s1
(1, 0, 0, 0, 0, 0)e_{1}-e_{2}s1
(0, 1, 0, 0, 0, 0)e_{2}-e_{3}s2
(0, 0, 1, 0, 0, 0)e_{3}-e_{4}s3
(0, 0, 0, 1, 0, 0)e_{4}-e_{5}s4
(0, 0, 0, 0, 1, 0)e_{5}-e_{6}s5
(0, 0, 0, 0, 0, 1)e_{6}s6
(1, 1, 0, 0, 0, 0)e_{1}-e_{3}s1s2s1
(0, 1, 1, 0, 0, 0)e_{2}-e_{4}s2s3s2
(0, 0, 1, 1, 0, 0)e_{3}-e_{5}s3s4s3
(0, 0, 0, 1, 1, 0)e_{4}-e_{6}s4s5s4
(0, 0, 0, 0, 1, 1)e_{5}s5s6s5
(1, 1, 1, 0, 0, 0)e_{1}-e_{4}s1s2s3s2s1
(0, 1, 1, 1, 0, 0)e_{2}-e_{5}s2s3s4s3s2
(0, 0, 1, 1, 1, 0)e_{3}-e_{6}s3s4s5s4s3
(0, 0, 0, 1, 1, 1)e_{4}s4s5s6s5s4
(0, 0, 0, 0, 1, 2)e_{5}+e_{6}s6s5s6
(1, 1, 1, 1, 0, 0)e_{1}-e_{5}s1s2s3s4s3s2s1
(0, 1, 1, 1, 1, 0)e_{2}-e_{6}s2s3s4s5s4s3s2
(0, 0, 1, 1, 1, 1)e_{3}s3s4s5s6s5s4s3
(0, 0, 0, 1, 1, 2)e_{4}+e_{6}s4s6s5s4s6
(1, 1, 1, 1, 1, 0)e_{1}-e_{6}s1s2s3s4s5s4s3s2s1
(0, 1, 1, 1, 1, 1)e_{2}s2s3s4s5s6s5s4s3s2
(0, 0, 1, 1, 1, 2)e_{3}+e_{6}s3s4s6s5s4s3s6
(0, 0, 0, 1, 2, 2)e_{4}+e_{5}s5s4s6s5s4s6s5
(1, 1, 1, 1, 1, 1)e_{1}s1s2s3s4s5s6s5s4s3s2s1
(0, 1, 1, 1, 1, 2)e_{2}+e_{6}s2s3s4s6s5s4s3s2s6
(0, 0, 1, 1, 2, 2)e_{3}+e_{5}s3s5s4s6s5s4s3s6s5
(1, 1, 1, 1, 1, 2)e_{1}+e_{6}s1s2s3s4s6s5s4s3s2s1s6
(0, 1, 1, 1, 2, 2)e_{2}+e_{5}s2s3s5s4s6s5s4s3s2s6s5
(0, 0, 1, 2, 2, 2)e_{3}+e_{4}s4s3s5s4s6s5s4s3s6s5s4
(1, 1, 1, 1, 2, 2)e_{1}+e_{5}s1s2s3s5s4s6s5s4s3s2s1s6s5
(0, 1, 1, 2, 2, 2)e_{2}+e_{4}s2s4s3s5s4s6s5s4s3s2s6s5s4
(1, 1, 1, 2, 2, 2)e_{1}+e_{4}s1s2s4s3s5s4s6s5s4s3s2s1s6s5s4
(0, 1, 2, 2, 2, 2)e_{2}+e_{3}s3s2s4s3s5s4s6s5s4s3s2s6s5s4s3
(1, 1, 2, 2, 2, 2)e_{1}+e_{3}s1s3s2s4s3s5s4s6s5s4s3s2s1s6s5s4s3
(1, 2, 2, 2, 2, 2)e_{1}+e_{2}s2s1s3s2s4s3s5s4s6s5s4s3s2s1s6s5s4s3s2
Comma delimited list of roots: (-1, -2, -2, -2, -2, -2), (-1, -1, -2, -2, -2, -2), (0, -1, -2, -2, -2, -2), (-1, -1, -1, -2, -2, -2), (0, -1, -1, -2, -2, -2), (-1, -1, -1, -1, -2, -2), (0, 0, -1, -2, -2, -2), (0, -1, -1, -1, -2, -2), (-1, -1, -1, -1, -1, -2), (0, 0, -1, -1, -2, -2), (0, -1, -1, -1, -1, -2), (-1, -1, -1, -1, -1, -1), (0, 0, 0, -1, -2, -2), (0, 0, -1, -1, -1, -2), (0, -1, -1, -1, -1, -1), (-1, -1, -1, -1, -1, 0), (0, 0, 0, -1, -1, -2), (0, 0, -1, -1, -1, -1), (0, -1, -1, -1, -1, 0), (-1, -1, -1, -1, 0, 0), (0, 0, 0, 0, -1, -2), (0, 0, 0, -1, -1, -1), (0, 0, -1, -1, -1, 0), (0, -1, -1, -1, 0, 0), (-1, -1, -1, 0, 0, 0), (0, 0, 0, 0, -1, -1), (0, 0, 0, -1, -1, 0), (0, 0, -1, -1, 0, 0), (0, -1, -1, 0, 0, 0), (-1, -1, 0, 0, 0, 0), (0, 0, 0, 0, 0, -1), (0, 0, 0, 0, -1, 0), (0, 0, 0, -1, 0, 0), (0, 0, -1, 0, 0, 0), (0, -1, 0, 0, 0, 0), (-1, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 1), (1, 1, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1), (0, 0, 0, 0, 1, 2), (1, 1, 1, 1, 0, 0), (0, 1, 1, 1, 1, 0), (0, 0, 1, 1, 1, 1), (0, 0, 0, 1, 1, 2), (1, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 1), (0, 0, 1, 1, 1, 2), (0, 0, 0, 1, 2, 2), (1, 1, 1, 1, 1, 1), (0, 1, 1, 1, 1, 2), (0, 0, 1, 1, 2, 2), (1, 1, 1, 1, 1, 2), (0, 1, 1, 1, 2, 2), (0, 0, 1, 2, 2, 2), (1, 1, 1, 1, 2, 2), (0, 1, 1, 2, 2, 2), (1, 1, 1, 2, 2, 2), (0, 1, 2, 2, 2, 2), (1, 1, 2, 2, 2, 2), (1, 2, 2, 2, 2, 2) The resulting Lie bracket pairing table follows.
Type B^{1}_6.The letter h stands for elements of the Cartan subalgebra,
the letter g stands for the Chevalley (root space) generators of non-zero weight.
The generator hi is the element of the Cartan subalgebra dual to the
i^th simple root, that is, [hi,g]=αi,γg,
where g is a Chevalley generator, γ is its weight, and
αi is the i^th simple root.
The Lie bracket table is too large to be rendered in LaTeX, displaying in html format instead.
roots simple coords epsilon coordinates[,]g_{-36}g_{-35}g_{-34}g_{-33}g_{-32}g_{-31}g_{-30}g_{-29}g_{-28}g_{-27}g_{-26}g_{-25}g_{-24}g_{-23}g_{-22}g_{-21}g_{-20}g_{-19}g_{-18}g_{-17}g_{-16}g_{-15}g_{-14}g_{-13}g_{-12}g_{-11}g_{-10}g_{-9}g_{-8}g_{-7}g_{-6}g_{-5}g_{-4}g_{-3}g_{-2}g_{-1}h_{1}h_{2}h_{3}h_{4}h_{5}h_{6}g_{1}g_{2}g_{3}g_{4}g_{5}g_{6}g_{7}g_{8}g_{9}g_{10}g_{11}g_{12}g_{13}g_{14}g_{15}g_{16}g_{17}g_{18}g_{19}g_{20}g_{21}g_{22}g_{23}g_{24}g_{25}g_{26}g_{27}g_{28}g_{29}g_{30}g_{31}g_{32}g_{33}g_{34}g_{35}g_{36}
(-1, -2, -2, -2, -2, -2)-e_{1}-e_{2}g_{-36}0000000000000000000000000000000000000g_{-36}00000g_{-35}0000-g_{-34}g_{-33}000-g_{-32}g_{-31}000-g_{-29}g_{-28}00-g_{-26}g_{-25}00-g_{-22}g_{-21}0-g_{-18}g_{-17}0-g_{-13}g_{-12}-g_{-8}g_{-7}-g_{-2}-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-h_{1}
(-1, -1, -2, -2, -2, -2)-e_{1}-e_{3}g_{-35}0000000000000000000000000000000000g_{-36}0g_{-35}-g_{-35}g_{-35}000g_{-34}0g_{-33}00000g_{-31}00-g_{-30}0g_{-28}00-g_{-27}0g_{-25}0-g_{-23}0g_{-21}0-g_{-19}0g_{-17}-g_{-14}0g_{-12}-g_{-9}0-g_{-3}-g_{-1}-2h_{6}-2h_{5}-2h_{4}-2h_{3}-h_{2}-h_{1}-g_{2}
(0, -1, -2, -2, -2, -2)-e_{2}-e_{3}g_{-34}00000000000000000000000000000-g_{-36}00000g_{-35}-g_{-34}0g_{-34}00000g_{-32}0000-g_{-30}g_{-29}000-g_{-27}g_{-26}000-g_{-23}g_{-22}00-g_{-19}g_{-18}00-g_{-14}g_{-13}0-g_{-9}g_{-8}0-g_{-3}0-2h_{6}-2h_{5}-2h_{4}-2h_{3}-h_{2}-g_{1}g_{7}
(-1, -1, -1, -2, -2, -2)-e_{1}-e_{4}g_{-33}0000000000000000000000000000g_{-36}0000g_{-35}00g_{-33}0-g_{-33}g_{-33}00g_{-32}00g_{-31}00g_{-30}00g_{-28}0000g_{-25}0-g_{-24}00g_{-21}-g_{-20}00g_{-17}-g_{-15}00-g_{-10}0-g_{-7}-g_{-4}-g_{-1}-2h_{6}-2h_{5}-2h_{4}-h_{3}-h_{2}-h_{1}0-g_{3}-g_{8}
(0, -1, -1, -2, -2, -2)-e_{2}-e_{4}g_{-32}000000000000000000000000-g_{-36}00000000g_{-34}0g_{-33}-g_{-32}g_{-32}-g_{-32}g_{-32}000g_{-30}0g_{-29}00000g_{-26}00-g_{-24}0g_{-22}00-g_{-20}0g_{-18}0-g_{-15}0g_{-13}0-g_{-10}00-g_{-4}-g_{-2}0-2h_{6}-2h_{5}-2h_{4}-h_{3}-h_{2}-g_{1}-g_{3}0g_{12}
(-1, -1, -1, -1, -2, -2)-e_{1}-e_{5}g_{-31}00000000000000000000000g_{-36}000g_{-35}0000g_{-33}000g_{-31}00-g_{-31}g_{-31}0g_{-29}000g_{-28}0g_{-27}000g_{-25}g_{-24}000g_{-21}0000-g_{-16}00-g_{-12}-g_{-11}0-g_{-7}-g_{-5}-g_{-1}0-2h_{6}-2h_{5}-h_{4}-h_{3}-h_{2}-h_{1}0-g_{4}0-g_{9}-g_{13}
(0, 0, -1, -2, -2, -2)-e_{3}-e_{4}g_{-30}000000000000000000000000-g_{-35}000-g_{-34}g_{-33}0000g_{-32}00-g_{-30}0g_{-30}00000g_{-27}0000-g_{-24}g_{-23}000-g_{-20}g_{-19}000-g_{-15}g_{-14}00-g_{-10}g_{-9}00-g_{-4}00-2h_{6}-2h_{5}-2h_{4}-h_{3}0-g_{2}-g_{7}g_{8}g_{12}0
(0, -1, -1, -1, -2, -2)-e_{2}-e_{5}g_{-29}0000000000000000000-g_{-36}0000000g_{-34}0000g_{-32}00g_{-31}-g_{-29}g_{-29}0-g_{-29}g_{-29}00g_{-27}00g_{-26}00g_{-24}00g_{-22}0000g_{-18}0-g_{-16}000-g_{-11}0-g_{-8}0-g_{-5}-g_{-2}0-2h_{6}-2h_{5}-h_{4}-h_{3}-h_{2}0-g_{1}-g_{4}0-g_{9}0g_{17}
(-1, -1, -1, -1, -1, -2)-e_{1}-e_{6}g_{-28}000000000000000000g_{-36}000g_{-35}000g_{-33}0000g_{-31}0000g_{-28}000-g_{-28}g_{-28}g_{-26}0000g_{-25}g_{-23}0000g_{-20}000-g_{-17}g_{-16}00-g_{-12}00-g_{-7}0-g_{-6}-g_{-1}0-2h_{6}-h_{5}-h_{4}-h_{3}-h_{2}-h_{1}00-g_{5}0-g_{10}0-g_{14}-g_{18}
(0, 0, -1, -1, -2, -2)-e_{3}-e_{5}g_{-27}0000000000000000000-g_{-35}000-g_{-34}00000g_{-31}00g_{-30}0g_{-29}00-g_{-27}g_{-27}-g_{-27}g_{-27}000g_{-24}0g_{-23}00000g_{-19}00-g_{-16}0g_{-14}00-g_{-11}000-g_{-5}-g_{-3}00-2h_{6}-2h_{5}-h_{4}-h_{3}0-g_{2}-g_{4}-g_{7}00g_{13}g_{17}0
(0, -1, -1, -1, -1, -2)-e_{2}-e_{6}g_{-26}000000000000000-g_{-36}000000g_{-34}000g_{-32}0000g_{-29}000g_{-28}-g_{-26}g_{-26}00-g_{-26}g_{-26}0g_{-23}000g_{-22}0g_{-20}0000g_{-16}00-g_{-13}000-g_{-8}0-g_{-6}-g_{-2}00-2h_{6}-h_{5}-h_{4}-h_{3}-h_{2}0-g_{1}-g_{5}00-g_{10}0-g_{14}0g_{21}
(-1, -1, -1, -1, -1, -1)-e_{1}g_{-25}000000000000002g_{-36}002g_{-35}0002g_{-33}0002g_{-31}00002g_{-28}00000g_{-25}00000g_{-22}0000-2g_{-21}g_{-19}000-2g_{-17}g_{-15}00-2g_{-12}0g_{-11}0-2g_{-7}0g_{-6}-2g_{-1}00-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}-2h_{1}00-g_{6}00-g_{11}0-g_{15}0-g_{19}-g_{22}
(0, 0, 0, -1, -2, -2)-e_{4}-e_{5}g_{-24}0000000000000000000-g_{-33}000-g_{-32}g_{-31}00-g_{-30}g_{-29}0000g_{-27}0000-g_{-24}0g_{-24}00000g_{-20}0000-g_{-16}g_{-15}000-g_{-11}g_{-10}000-g_{-5}000-2h_{6}-2h_{5}-h_{4}00-g_{3}0-g_{8}g_{9}-g_{12}g_{13}g_{17}000
(0, 0, -1, -1, -1, -2)-e_{3}-e_{6}g_{-23}000000000000000-g_{-35}00-g_{-34}0000000g_{-30}00g_{-28}0g_{-27}00g_{-26}00-g_{-23}g_{-23}0-g_{-23}g_{-23}00g_{-20}00g_{-19}00g_{-16}000000-g_{-9}00-g_{-6}-g_{-3}00-2h_{6}-h_{5}-h_{4}-h_{3}00-g_{2}-g_{5}-g_{7}0-g_{10}000g_{18}g_{21}0
(0, -1, -1, -1, -1, -1)-e_{2}g_{-22}00000000000-2g_{-36}000002g_{-34}0002g_{-32}0002g_{-29}00002g_{-26}0000g_{-25}-g_{-22}g_{-22}00000g_{-19}000-2g_{-18}0g_{-15}00-2g_{-13}0g_{-11}0-2g_{-8}00g_{-6}-2g_{-2}00-2h_{6}-2h_{5}-2h_{4}-2h_{3}-2h_{2}00-2g_{1}-g_{6}00-g_{11}00-g_{15}0-g_{19}0g_{25}
(-1, -1, -1, -1, -1, 0)-e_{1}+e_{6}g_{-21}0000000000g_{-36}00g_{-35}00g_{-33}000g_{-31}000000000-g_{-25}00000g_{-21}000g_{-21}-g_{-21}g_{-18}000-g_{-17}0g_{-14}00-g_{-12}0g_{-10}0-g_{-7}00g_{-5}-g_{-1}00-h_{5}-h_{4}-h_{3}-h_{2}-h_{1}000g_{6}00000-g_{16}0-g_{20}0-g_{23}-g_{26}
(0, 0, 0, -1, -1, -2)-e_{4}-e_{6}g_{-20}000000000000000-g_{-33}00-g_{-32}000-g_{-30}0g_{-28}000g_{-26}00g_{-24}0g_{-23}0000-g_{-20}g_{-20}-g_{-20}g_{-20}000g_{-16}0g_{-15}00000000-g_{-6}-g_{-4}000-2h_{6}-h_{5}-h_{4}00-g_{3}-g_{5}0-g_{8}0-g_{12}0g_{14}0g_{18}g_{21}000
(0, 0, -1, -1, -1, -1)-e_{3}g_{-19}00000000000-2g_{-35}00-2g_{-34}0000002g_{-30}0002g_{-27}000g_{-25}2g_{-23}000g_{-22}00-g_{-19}g_{-19}00000g_{-15}00-2g_{-14}00g_{-11}0-2g_{-9}00g_{-6}-2g_{-3}000-2h_{6}-2h_{5}-2h_{4}-2h_{3}00-2g_{2}-g_{6}0-2g_{7}0-g_{11}00-g_{15}000g_{22}g_{25}0
(0, -1, -1, -1, -1, 0)-e_{2}+e_{6}g_{-18}00000000-g_{-36}0000g_{-34}00g_{-32}000g_{-29}000000000-g_{-22}0000g_{-21}-g_{-18}g_{-18}00g_{-18}-g_{-18}0g_{-14}00-g_{-13}00g_{-10}0-g_{-8}00g_{-5}-g_{-2}000-h_{5}-h_{4}-h_{3}-h_{2}00-g_{1}g_{6}000000-g_{16}00-g_{20}0-g_{23}0g_{28}
(-1, -1, -1, -1, 0, 0)-e_{1}+e_{5}g_{-17}0000000g_{-36}0g_{-35}00g_{-33}0000000-g_{-28}0000-g_{-25}00000-g_{-21}0000g_{-17}00g_{-17}-g_{-17}0g_{-13}00-g_{-12}00g_{-9}0-g_{-7}00g_{-4}-g_{-1}000-h_{4}-h_{3}-h_{2}-h_{1}000g_{5}000g_{11}00g_{16}0000-g_{24}0-g_{27}-g_{29}
(0, 0, 0, 0, -1, -2)-e_{5}-e_{6}g_{-16}000000000000000-g_{-31}00-g_{-29}g_{-28}00-g_{-27}g_{-26}00-g_{-24}g_{-23}0000g_{-20}000000-g_{-16}0g_{-16}00000g_{-11}0000-g_{-6}0000-2h_{6}-h_{5}000-g_{4}00-g_{9}g_{10}0-g_{13}g_{14}-g_{17}g_{18}0g_{21}00000
(0, 0, 0, -1, -1, -1)-e_{4}g_{-15}00000000000-2g_{-33}00-2g_{-32}00-2g_{-30}000000g_{-25}2g_{-24}00g_{-22}02g_{-20}00g_{-19}0000-g_{-15}g_{-15}00000g_{-11}0-2g_{-10}000g_{-6}-2g_{-4}000-2h_{6}-2h_{5}-2h_{4}000-2g_{3}-g_{6}0-2g_{8}0-g_{11}-2g_{12}0000g_{19}0g_{22}g_{25}000
(0, 0, -1, -1, -1, 0)-e_{3}+e_{6}g_{-14}00000000-g_{-35}0-g_{-34}00000g_{-30}000g_{-27}00000000g_{-21}-g_{-19}000g_{-18}00-g_{-14}g_{-14}0g_{-14}-g_{-14}00g_{-10}0-g_{-9}000g_{-5}-g_{-3}000-h_{5}-h_{4}-h_{3}000-g_{2}g_{6}0-g_{7}00000-g_{16}00-g_{20}000g_{26}g_{28}0
(0, -1, -1, -1, 0, 0)-e_{2}+e_{5}g_{-13}00000-g_{-36}000g_{-34}00g_{-32}0000000-g_{-26}0000-g_{-22}00000-g_{-18}000g_{-17}-g_{-13}g_{-13}0g_{-13}-g_{-13}00g_{-9}0-g_{-8}000g_{-4}-g_{-2}000-h_{4}-h_{3}-h_{2}000-g_{1}g_{5}000g_{11}000g_{16}00000-g_{24}0-g_{27}0g_{31}
(-1, -1, -1, 0, 0, 0)-e_{1}+e_{4}g_{-12}0000g_{-36}0g_{-35}00000-g_{-31}000-g_{-28}0000-g_{-25}0000-g_{-21}00000-g_{-17}000g_{-12}0g_{-12}-g_{-12}00g_{-8}0-g_{-7}000g_{-3}-g_{-1}000-h_{3}-h_{2}-h_{1}0000g_{4}000g_{10}000g_{15}00g_{20}00g_{24}000-g_{30}-g_{32}
(0, 0, 0, 0, -1, -1)-e_{5}g_{-11}00000000000-2g_{-31}00-2g_{-29}00-2g_{-27}0g_{-25}0-2g_{-24}0g_{-22}000g_{-19}002g_{-16}0g_{-15}000000-g_{-11}g_{-11}00000g_{-6}-2g_{-5}0000-2h_{6}-2h_{5}000-2g_{4}-g_{6}00-2g_{9}00-2g_{13}0g_{15}-2g_{17}0g_{19}0g_{22}0g_{25}00000
(0, 0, 0, -1, -1, 0)-e_{4}+e_{6}g_{-10}00000000-g_{-33}0-g_{-32}00-g_{-30}000000g_{-24}000g_{-21}000g_{-18}0-g_{-15}00g_{-14}0000-g_{-10}g_{-10}g_{-10}-g_{-10}000g_{-5}-g_{-4}0000-h_{5}-h_{4}000-g_{3}g_{6}00-g_{8}00-g_{12}00-g_{16}00000g_{23}0g_{26}g_{28}000
(0, 0, -1, -1, 0, 0)-e_{3}+e_{5}g_{-9}00000-g_{-35}0-g_{-34}0000g_{-30}0000000-g_{-23}0000-g_{-19}000g_{-17}0-g_{-14}00g_{-13}00-g_{-9}g_{-9}g_{-9}-g_{-9}000g_{-4}-g_{-3}0000-h_{4}-h_{3}000-g_{2}g_{5}00-g_{7}0g_{11}000g_{16}000000-g_{24}000g_{29}g_{31}0
(0, -1, -1, 0, 0, 0)-e_{2}+e_{4}g_{-8}000-g_{-36}00g_{-34}00000-g_{-29}000-g_{-26}0000-g_{-22}0000-g_{-18}00000-g_{-13}00g_{-12}-g_{-8}g_{-8}g_{-8}-g_{-8}000g_{-3}-g_{-2}0000-h_{3}-h_{2}000-g_{1}g_{4}0000g_{10}000g_{15}000g_{20}00g_{24}0000-g_{30}0g_{33}
(-1, -1, 0, 0, 0, 0)-e_{1}+e_{3}g_{-7}00g_{-36}000-g_{-33}00-g_{-31}000-g_{-28}000-g_{-25}0000-g_{-21}0000-g_{-17}00000-g_{-12}00g_{-7}g_{-7}-g_{-7}000g_{-2}-g_{-1}0000-h_{2}-h_{1}0000g_{3}0000g_{9}000g_{14}000g_{19}00g_{23}00g_{27}0g_{30}00-g_{34}
(0, 0, 0, 0, 0, -1)-e_{6}g_{-6}00000000000-2g_{-28}00-2g_{-26}g_{-25}0-2g_{-23}g_{-22}00-2g_{-20}g_{-19}00-2g_{-16}g_{-15}0000g_{-11}00000000-g_{-6}g_{-6}00000-2h_{6}0000-2g_{5}000-2g_{10}g_{11}00-2g_{14}g_{15}0-2g_{18}g_{19}0-2g_{21}g_{22}0g_{25}00000000
(0, 0, 0, 0, -1, 0)-e_{5}+e_{6}g_{-5}00000000-g_{-31}0-g_{-29}00-g_{-27}00-g_{-24}00g_{-21}000g_{-18}000g_{-14}00-g_{-11}0g_{-10}000000-g_{-5}2g_{-5}-g_{-5}0000-h_{5}0000-g_{4}g_{6}00-g_{9}000-g_{13}00-g_{17}00g_{20}00g_{23}0g_{26}0g_{28}00000
(0, 0, 0, -1, 0, 0)-e_{4}+e_{5}g_{-4}00000-g_{-33}0-g_{-32}0-g_{-30}0000000000-g_{-20}000g_{-17}-g_{-15}00g_{-13}00-g_{-10}0g_{-9}0000-g_{-4}2g_{-4}-g_{-4}0000-h_{4}0000-g_{3}g_{5}00-g_{8}0g_{11}0-g_{12}00g_{16}000000000g_{27}0g_{29}g_{31}000
(0, 0, -1, 0, 0, 0)-e_{3}+e_{4}g_{-3}000-g_{-35}-g_{-34}0000000-g_{-27}000-g_{-23}0000-g_{-19}0000-g_{-14}00g_{-12}00-g_{-9}0g_{-8}00-g_{-3}2g_{-3}-g_{-3}0000-h_{3}0000-g_{2}g_{4}00-g_{7}0g_{10}0000g_{15}000g_{20}000g_{24}000000g_{32}g_{33}0
(0, -1, 0, 0, 0, 0)-e_{2}+e_{3}g_{-2}0-g_{-36}0000-g_{-32}00-g_{-29}000-g_{-26}000-g_{-22}0000-g_{-18}0000-g_{-13}00000-g_{-8}0g_{-7}-g_{-2}2g_{-2}-g_{-2}0000-h_{2}0000-g_{1}g_{3}0000g_{9}0000g_{14}000g_{19}000g_{23}00g_{27}00g_{30}000g_{35}
(-1, 0, 0, 0, 0, 0)-e_{1}+e_{2}g_{-1}00-g_{-35}0-g_{-33}00-g_{-31}00-g_{-28}000-g_{-25}000-g_{-21}0000-g_{-17}0000-g_{-12}00000-g_{-7}02g_{-1}-g_{-1}0000-h_{1}00000g_{2}0000g_{8}0000g_{13}000g_{18}000g_{22}00g_{26}00g_{29}0g_{32}0g_{34}0
(0, 0, 0, 0, 0, 0)0h_{1}0-g_{-35}g_{-34}-g_{-33}g_{-32}-g_{-31}0g_{-29}-g_{-28}0g_{-26}-g_{-25}00g_{-22}-g_{-21}00g_{-18}-g_{-17}000g_{-13}-g_{-12}000g_{-8}-g_{-7}0000g_{-2}-2g_{-1}0000002g_{1}-g_{2}0000g_{7}-g_{8}000g_{12}-g_{13}000g_{17}-g_{18}00g_{21}-g_{22}00g_{25}-g_{26}0g_{28}-g_{29}0g_{31}-g_{32}g_{33}-g_{34}g_{35}0
(0, 0, 0, 0, 0, 0)0h_{2}-g_{-36}g_{-35}00-g_{-32}0g_{-30}-g_{-29}0g_{-27}-g_{-26}00g_{-23}-g_{-22}00g_{-19}-g_{-18}000g_{-14}-g_{-13}000g_{-9}-g_{-8}-g_{-7}000g_{-3}-2g_{-2}g_{-1}000000-g_{1}2g_{2}-g_{3}000g_{7}g_{8}-g_{9}000g_{13}-g_{14}000g_{18}-g_{19}00g_{22}-g_{23}00g_{26}-g_{27}0g_{29}-g_{30}0g_{32}00-g_{35}g_{36}
(0, 0, 0, 0, 0, 0)0h_{3}0-g_{-35}-g_{-34}g_{-33}g_{-32}0000-g_{-27}00g_{-24}-g_{-23}00g_{-20}-g_{-19}000g_{-15}-g_{-14}0-g_{-12}0g_{-10}-g_{-9}-g_{-8}g_{-7}00g_{-4}-2g_{-3}g_{-2}00000000-g_{2}2g_{3}-g_{4}00-g_{7}g_{8}g_{9}-g_{10}0g_{12}0g_{14}-g_{15}000g_{19}-g_{20}00g_{23}-g_{24}00g_{27}0000-g_{32}-g_{33}g_{34}g_{35}0
(0, 0, 0, 0, 0, 0)0h_{4}000-g_{-33}-g_{-32}g_{-31}-g_{-30}g_{-29}0g_{-27}000000-g_{-20}00-g_{-17}g_{-16}-g_{-15}0-g_{-13}g_{-12}g_{-11}-g_{-10}-g_{-9}g_{-8}00g_{-5}-2g_{-4}g_{-3}0000000000-g_{3}2g_{4}-g_{5}00-g_{8}g_{9}g_{10}-g_{11}-g_{12}g_{13}0g_{15}-g_{16}g_{17}00g_{20}000000-g_{27}0-g_{29}g_{30}-g_{31}g_{32}g_{33}000
(0, 0, 0, 0, 0, 0)0h_{5}00000-g_{-31}0-g_{-29}g_{-28}-g_{-27}g_{-26}0-g_{-24}g_{-23}0-g_{-21}g_{-20}0-g_{-18}g_{-17}00-g_{-14}g_{-13}0-g_{-11}-g_{-10}g_{-9}00g_{-6}-2g_{-5}g_{-4}000000000000-g_{4}2g_{5}-g_{6}00-g_{9}g_{10}g_{11}0-g_{13}g_{14}00-g_{17}g_{18}0-g_{20}g_{21}0-g_{23}g_{24}0-g_{26}g_{27}-g_{28}g_{29}0g_{31}00000
(0, 0, 0, 0, 0, 0)0h_{6}00000000-g_{-28}0-g_{-26}00-g_{-23}0g_{-21}-g_{-20}0g_{-18}0-g_{-16}0g_{-14}000g_{-10}000-g_{-6}g_{-5}00000000000000-g_{5}g_{6}000-g_{10}000-g_{14}0g_{16}0-g_{18}0g_{20}-g_{21}0g_{23}00g_{26}0g_{28}00000000
(1, 0, 0, 0, 0, 0)e_{1}-e_{2}g_{1}0-g_{-34}0-g_{-32}0-g_{-29}00-g_{-26}00-g_{-22}000-g_{-18}000-g_{-13}0000-g_{-8}0000-g_{-2}00000h_{1}-2g_{1}g_{1}00000g_{7}00000g_{12}0000g_{17}0000g_{21}000g_{25}000g_{28}00g_{31}00g_{33}0g_{35}00
(0, 1, 0, 0, 0, 0)e_{2}-e_{3}g_{2}-g_{-35}000-g_{-30}00-g_{-27}00-g_{-23}000-g_{-19}000-g_{-14}0000-g_{-9}0000-g_{-3}g_{-1}0000h_{2}0g_{2}-2g_{2}g_{2}000-g_{7}0g_{8}00000g_{13}0000g_{18}0000g_{22}000g_{26}000g_{29}00g_{32}0000g_{36}0
(0, 0, 1, 0, 0, 0)e_{3}-e_{4}g_{3}0-g_{-33}-g_{-32}000000-g_{-24}000-g_{-20}000-g_{-15}0000-g_{-10}0g_{-7}00-g_{-4}g_{-2}0000h_{3}000g_{3}-2g_{3}g_{3}000-g_{8}0g_{9}00-g_{12}00g_{14}0000g_{19}0000g_{23}000g_{27}0000000g_{34}g_{35}000
(0, 0, 0, 1, 0, 0)e_{4}-e_{5}g_{4}000-g_{-31}-g_{-29}0-g_{-27}000000000-g_{-16}00g_{-12}0-g_{-11}0g_{-8}00-g_{-5}g_{-3}0000h_{4}00000g_{4}-2g_{4}g_{4}000-g_{9}0g_{10}00-g_{13}00g_{15}-g_{17}000g_{20}0000000000g_{30}0g_{32}0g_{33}00000
(0, 0, 0, 0, 1, 0)e_{5}-e_{6}g_{5}00000-g_{-28}0-g_{-26}0-g_{-23}00-g_{-20}00g_{-17}00g_{-13}000g_{-9}00-g_{-6}g_{-4}0000h_{5}0000000g_{5}-2g_{5}g_{5}000-g_{10}0g_{11}00-g_{14}000-g_{18}000-g_{21}00g_{24}00g_{27}00g_{29}0g_{31}00000000
(0, 0, 0, 0, 0, 1)e_{6}g_{6}00000000-g_{-25}0-g_{-22}2g_{-21}0-g_{-19}2g_{-18}0-g_{-15}2g_{-14}00-g_{-11}2g_{-10}0002g_{-5}00002h_{6}000000000g_{6}-g_{6}0000-g_{11}0000-g_{15}2g_{16}00-g_{19}2g_{20}00-g_{22}2g_{23}0-g_{25}2g_{26}002g_{28}00000000000
(1, 1, 0, 0, 0, 0)e_{1}-e_{3}g_{7}g_{-34}00-g_{-30}0-g_{-27}00-g_{-23}00-g_{-19}000-g_{-14}000-g_{-9}0000-g_{-3}0000h_{2}+h_{1}0000g_{1}-g_{2}-g_{7}-g_{7}g_{7}00000g_{12}00000g_{17}0000g_{21}0000g_{25}000g_{28}000g_{31}00g_{33}000-g_{36}00
(0, 1, 1, 0, 0, 0)e_{2}-e_{4}g_{8}-g_{-33}0g_{-30}0000-g_{-24}00-g_{-20}000-g_{-15}000-g_{-10}0000-g_{-4}g_{-1}000h_{3}+h_{2}0000g_{2}-g_{3}0g_{8}-g_{8}-g_{8}g_{8}00-g_{12}00g_{13}00000g_{18}0000g_{22}0000g_{26}000g_{29}00000-g_{34}00g_{36}000
(0, 0, 1, 1, 0, 0)e_{3}-e_{5}g_{9}0-g_{-31}-g_{-29}000g_{-24}000000-g_{-16}000-g_{-11}0g_{-7}00-g_{-5}g_{-2}000h_{4}+h_{3}0000g_{3}-g_{4}000g_{9}-g_{9}-g_{9}g_{9}00-g_{13}00g_{14}0-g_{17}000g_{19}0000g_{23}0000000-g_{30}0000g_{34}0g_{35}00000
(0, 0, 0, 1, 1, 0)e_{4}-e_{6}g_{10}000-g_{-28}-g_{-26}0-g_{-23}00000g_{-16}00g_{-12}00g_{-8}00-g_{-6}g_{-3}000h_{5}+h_{4}0000g_{4}-g_{5}00000g_{10}-g_{10}-g_{10}g_{10}00-g_{14}00g_{15}0-g_{18}000-g_{21}000-g_{24}000000g_{30}00g_{32}0g_{33}00000000
(0, 0, 0, 0, 1, 1)e_{5}g_{11}00000-g_{-25}0-g_{-22}0-g_{-19}02g_{-17}-g_{-15}02g_{-13}002g_{-9}00g_{-6}2g_{-4}0002h_{6}+2h_{5}00002g_{5}-g_{6}0000000g_{11}-g_{11}0000-g_{15}0-2g_{16}00-g_{19}000-g_{22}02g_{24}0-g_{25}02g_{27}002g_{29}002g_{31}00000000000
(1, 1, 1, 0, 0, 0)e_{1}-e_{4}g_{12}g_{-32}g_{-30}000-g_{-24}00-g_{-20}00-g_{-15}000-g_{-10}000-g_{-4}0000h_{3}+h_{2}+h_{1}000g_{1}-g_{3}000g_{7}0-g_{8}-g_{12}0-g_{12}g_{12}00000g_{17}00000g_{21}0000g_{25}0000g_{28}000g_{31}00000-g_{35}0-g_{36}0000
(0, 1, 1, 1, 0, 0)e_{2}-e_{5}g_{13}-g_{-31}0g_{-27}0g_{-24}00000-g_{-16}000-g_{-11}000-g_{-5}g_{-1}000h_{4}+h_{3}+h_{2}000g_{2}-g_{4}000g_{8}0-g_{9}0g_{13}-g_{13}0-g_{13}g_{13}0-g_{17}000g_{18}00000g_{22}0000g_{26}0000000-g_{32}00-g_{34}000g_{36}00000
(0, 0, 1, 1, 1, 0)e_{3}-e_{6}g_{14}0-g_{-28}-g_{-26}000g_{-20}00g_{-16}00000g_{-7}0-g_{-6}g_{-2}000h_{5}+h_{4}+h_{3}000g_{3}-g_{5}000g_{9}0-g_{10}000g_{14}-g_{14}0-g_{14}g_{14}0-g_{18}000g_{19}-g_{21}00000000-g_{27}000-g_{30}00000g_{34}0g_{35}00000000
(0, 0, 0, 1, 1, 1)e_{4}g_{15}000-g_{-25}-g_{-22}0-g_{-19}00002g_{-12}g_{-11}02g_{-8}0g_{-6}2g_{-3}0002h_{6}+2h_{5}+2h_{4}0002g_{4}-g_{6}0002g_{10}0-g_{11}00000g_{15}-g_{15}0000-g_{19}00-2g_{20}0-g_{22}00-2g_{24}-g_{25}0000002g_{30}002g_{32}002g_{33}00000000000
(0, 0, 0, 0, 1, 2)e_{5}+e_{6}g_{16}00000-g_{-21}0-g_{-18}g_{-17}-g_{-14}g_{-13}0-g_{-10}g_{-9}00g_{-4}0002h_{6}+h_{5}0000g_{6}0000-g_{11}00000000g_{16}0-g_{16}000-g_{20}0000-g_{23}g_{24}00-g_{26}g_{27}00-g_{28}g_{29}00g_{31}000000000000000
(1, 1, 1, 1, 0, 0)e_{1}-e_{5}g_{17}g_{-29}g_{-27}0g_{-24}0000-g_{-16}00-g_{-11}000-g_{-5}000h_{4}+h_{3}+h_{2}+h_{1}000g_{1}-g_{4}00g_{7}0-g_{9}00g_{12}00-g_{13}-g_{17}00-g_{17}g_{17}00000g_{21}00000g_{25}0000g_{28}0000000-g_{33}00-g_{35}0-g_{36}0000000
(0, 1, 1, 1, 1, 0)e_{2}-e_{6}g_{18}-g_{-28}0g_{-23}0g_{-20}00g_{-16}000000-g_{-6}g_{-1}00h_{5}+h_{4}+h_{3}+h_{2}000g_{2}-g_{5}00g_{8}0-g_{10}00g_{13}00-g_{14}0g_{18}-g_{18}00-g_{18}g_{18}-g_{21}0000g_{22}000000000-g_{29}000-g_{32}00-g_{34}0000g_{36}00000000
(0, 0, 1, 1, 1, 1)e_{3}g_{19}0-g_{-25}-g_{-22}000g_{-15}00g_{-11}02g_{-7}0g_{-6}2g_{-2}002h_{6}+2h_{5}+2h_{4}+2h_{3}0002g_{3}-g_{6}002g_{9}0-g_{11}002g_{14}00-g_{15}000g_{19}-g_{19}0000-g_{22}000-2g_{23}-g_{25}000-2g_{27}000-2g_{30}0000002g_{34}002g_{35}00000000000
(0, 0, 0, 1, 1, 2)e_{4}+e_{6}g_{20}000-g_{-21}-g_{-18}0-g_{-14}0g_{-12}0g_{-8}0g_{-5}g_{-3}002h_{6}+h_{5}+h_{4}000g_{4}g_{6}00000000-g_{15}0-g_{16}00000g_{20}-g_{20}g_{20}-g_{20}00-g_{23}0-g_{24}00-g_{26}000-g_{28}0g_{30}000g_{32}00g_{33}000000000000000
(1, 1, 1, 1, 1, 0)e_{1}-e_{6}g_{21}g_{-26}g_{-23}0g_{-20}0g_{-16}00000-g_{-6}000h_{5}+h_{4}+h_{3}+h_{2}+h_{1}00g_{1}-g_{5}00g_{7}0-g_{10}0g_{12}00-g_{14}0g_{17}000-g_{18}-g_{21}000-g_{21}g_{21}00000g_{25}000000000-g_{31}000-g_{33}00-g_{35}00-g_{36}0000000000
(0, 1, 1, 1, 1, 1)e_{2}g_{22}-g_{-25}0g_{-19}0g_{-15}00g_{-11}00g_{-6}2g_{-1}002h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}002g_{2}-g_{6}002g_{8}0-g_{11}02g_{13}00-g_{15}02g_{18}000-g_{19}0g_{22}-g_{22}0000-g_{25}0000-2g_{26}0000-2g_{29}000-2g_{32}000-2g_{34}000002g_{36}00000000000
(0, 0, 1, 1, 1, 2)e_{3}+e_{6}g_{23}0-g_{-21}-g_{-18}000g_{-10}0g_{-7}g_{-5}g_{-2}002h_{6}+h_{5}+h_{4}+h_{3}00g_{3}g_{6}00g_{9}000000-g_{16}00-g_{19}00-g_{20}000g_{23}-g_{23}0g_{23}-g_{23}0-g_{26}00-g_{27}0-g_{28}00-g_{30}0000000g_{34}00g_{35}000000000000000
(0, 0, 0, 1, 2, 2)e_{4}+e_{5}g_{24}000-g_{-17}-g_{-13}g_{-12}-g_{-9}g_{-8}0g_{-3}002h_{6}+2h_{5}+h_{4}000g_{5}000-g_{10}g_{11}000-g_{15}g_{16}0000-g_{20}000000g_{24}0-g_{24}000-g_{27}0000-g_{29}g_{30}00-g_{31}g_{32}000g_{33}0000000000000000000
(1, 1, 1, 1, 1, 1)e_{1}g_{25}g_{-22}g_{-19}0g_{-15}0g_{-11}00g_{-6}002h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+2h_{1}002g_{1}-g_{6}02g_{7}0-g_{11}02g_{12}00-g_{15}2g_{17}000-g_{19}2g_{21}0000-g_{22}-g_{25}0000000000-2g_{28}0000-2g_{31}000-2g_{33}000-2g_{35}00-2g_{36}00000000000000
(0, 1, 1, 1, 1, 2)e_{2}+e_{6}g_{26}-g_{-21}0g_{-14}0g_{-10}00g_{-5}g_{-1}02h_{6}+h_{5}+h_{4}+h_{3}+h_{2}00g_{2}g_{6}0g_{8}000g_{13}00-g_{16}0000-g_{20}0-g_{22}000-g_{23}0g_{26}-g_{26}00g_{26}-g_{26}-g_{28}000-g_{29}0000-g_{32}000-g_{34}000000g_{36}000000000000000
(0, 0, 1, 1, 2, 2)e_{3}+e_{5}g_{27}0-g_{-17}-g_{-13}00g_{-7}g_{-4}g_{-2}02h_{6}+2h_{5}+h_{4}+h_{3}00g_{3}g_{5}000g_{11}00-g_{14}0g_{16}00-g_{19}00000-g_{23}0-g_{24}000g_{27}-g_{27}g_{27}-g_{27}00-g_{29}0-g_{30}00-g_{31}00000g_{34}000g_{35}0000000000000000000
(1, 1, 1, 1, 1, 2)e_{1}+e_{6}g_{28}g_{-18}g_{-14}0g_{-10}0g_{-5}002h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1}0g_{1}g_{6}0g_{7}00g_{12}00-g_{16}g_{17}000-g_{20}0000-g_{23}-g_{25}0000-g_{26}-g_{28}000g_{28}-g_{28}0000-g_{31}0000-g_{33}000-g_{35}000-g_{36}000000000000000000
(0, 1, 1, 1, 2, 2)e_{2}+e_{5}g_{29}-g_{-17}0g_{-9}0g_{-4}g_{-1}02h_{6}+2h_{5}+h_{4}+h_{3}+h_{2}0g_{2}g_{5}0g_{8}0g_{11}000g_{16}0-g_{18}0000-g_{22}00-g_{24}00-g_{26}00-g_{27}0g_{29}-g_{29}0g_{29}-g_{29}0-g_{31}00-g_{32}0000-g_{34}0000000g_{36}0000000000000000000
(0, 0, 1, 2, 2, 2)e_{3}+e_{4}g_{30}0-g_{-12}-g_{-8}g_{-7}g_{-2}02h_{6}+2h_{5}+2h_{4}+h_{3}00g_{4}00-g_{9}g_{10}00-g_{14}g_{15}000-g_{19}g_{20}000-g_{23}g_{24}0000-g_{27}0000g_{30}0-g_{30}000-g_{32}0000-g_{33}g_{34}000g_{35}000000000000000000000000
(1, 1, 1, 1, 2, 2)e_{1}+e_{5}g_{31}g_{-13}g_{-9}0g_{-4}02h_{6}+2h_{5}+h_{4}+h_{3}+h_{2}+h_{1}0g_{1}g_{5}g_{7}0g_{11}g_{12}00g_{16}0000-g_{21}000-g_{24}-g_{25}000-g_{27}0-g_{28}000-g_{29}-g_{31}00g_{31}-g_{31}0000-g_{33}0000-g_{35}000-g_{36}00000000000000000000000
(0, 1, 1, 2, 2, 2)e_{2}+e_{4}g_{32}-g_{-12}0g_{-3}g_{-1}2h_{6}+2h_{5}+2h_{4}+h_{3}+h_{2}0g_{2}g_{4}00g_{10}0-g_{13}0g_{15}0-g_{18}0g_{20}00-g_{22}0g_{24}00-g_{26}00000-g_{29}0-g_{30}0g_{32}-g_{32}g_{32}-g_{32}00-g_{33}0-g_{34}00000000g_{36}000000000000000000000000
(1, 1, 1, 2, 2, 2)e_{1}+e_{4}g_{33}g_{-8}g_{-3}02h_{6}+2h_{5}+2h_{4}+h_{3}+h_{2}+h_{1}g_{1}g_{4}g_{7}0g_{10}00g_{15}-g_{17}00g_{20}-g_{21}00g_{24}0-g_{25}0000-g_{28}00-g_{30}00-g_{31}00-g_{32}-g_{33}0g_{33}-g_{33}0000-g_{35}0000-g_{36}0000000000000000000000000000
(0, 1, 2, 2, 2, 2)e_{2}+e_{3}g_{34}-g_{-7}g_{-1}2h_{6}+2h_{5}+2h_{4}+2h_{3}+h_{2}0g_{3}0-g_{8}g_{9}0-g_{13}g_{14}00-g_{18}g_{19}00-g_{22}g_{23}000-g_{26}g_{27}000-g_{29}g_{30}0000-g_{32}00g_{34}0-g_{34}000-g_{35}00000g_{36}00000000000000000000000000000
(1, 1, 2, 2, 2, 2)e_{1}+e_{3}g_{35}g_{-2}2h_{6}+2h_{5}+2h_{4}+2h_{3}+h_{2}+h_{1}g_{1}g_{3}0g_{9}-g_{12}0g_{14}-g_{17}0g_{19}0-g_{21}0g_{23}0-g_{25}0g_{27}00-g_{28}0g_{30}00-g_{31}00000-g_{33}0-g_{34}-g_{35}g_{35}-g_{35}0000-g_{36}0000000000000000000000000000000000
(1, 2, 2, 2, 2, 2)e_{1}+e_{2}g_{36}2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}g_{2}-g_{7}g_{8}-g_{12}g_{13}0-g_{17}g_{18}0-g_{21}g_{22}00-g_{25}g_{26}00-g_{28}g_{29}000-g_{31}g_{32}000-g_{33}g_{34}0000-g_{35}00-g_{36}0000000000000000000000000000000000000000
We define the symmetric Cartan matrix
by requesting that the entry in the i-th row and j-th column
be the scalar product of the i^th and j^th roots. The symmetric Cartan matrix is:
(210000121000012100001210000121000011)
Let the (i, j)^{th} entry of the symmetric Cartan matrix be a_{ij}.
Then we define the co-symmetric Cartan matrix as the matrix whose (i, j)^{th} entry equals 4*a_{ij}/(a_{ii}*a_{jj}). In other words, the co-symmetric Cartan matrix is the symmetric Cartan matrix of the dual root system. The co-symmetric Cartan matrix equals:
(210000121000012100001210000122000024)
The determinant of the symmetric Cartan matrix is: 1
Half sum of positive roots: (11/2, 10, 27/2, 16, 35/2, 18)= 11/2ε1+9/2ε2+7/2ε3+5/2ε4+3/2ε5+1/2ε6
The fundamental weights (the j^th fundamental weight has scalar product 1
with the j^th simple root times 2 divided by the root length squared,
and 0 with the remaining simple roots):
(1, 1, 1, 1, 1, 1) = ε1
(1, 2, 2, 2, 2, 2) = ε1+ε2
(1, 2, 3, 3, 3, 3) = ε1+ε2+ε3
(1, 2, 3, 4, 4, 4) = ε1+ε2+ε3+ε4
(1, 2, 3, 4, 5, 5) = ε1+ε2+ε3+ε4+ε5
(1/2, 1, 3/2, 2, 5/2, 3) = 1/2ε1+1/2ε2+1/2ε3+1/2ε4+1/2ε5+1/2ε6

Below is the simple basis realized in epsilon coordinates. Please note that the epsilon coordinate realizations do not have long roots of length of 2 in types G and C. This means that gramm matrix (w.r.t. the standard scalar product) of the epsilon coordinate realizations in types G and C does not equal the corresponding symmetric Cartan matrix.
(1, 0, 0, 0, 0, 0) = ε1ε2
(0, 1, 0, 0, 0, 0) = ε2ε3
(0, 0, 1, 0, 0, 0) = ε3ε4
(0, 0, 0, 1, 0, 0) = ε4ε5
(0, 0, 0, 0, 1, 0) = ε5ε6
(0, 0, 0, 0, 0, 1) = ε6